Documenting the Coming Singularity

Thursday, February 11, 2010

Simulate falling into a black hole - 2.10.10 (by Ted Goodman)

Simulated view of a black hole in front of the Large Magellanic Cloud. The ratio between the black hole Schwarzschild radius and the observer distance to it is 1:9. Of note is the gravitational lensing effect known as an Einstein ring, which produces a set of two fairly bright and large but highly distorted images of the Cloud as compared to its actual angular size. (Image: Wikipedia.)

Black holes are my constant companions, at least in my imagination. Starting back a couple of decades ago, two sets of basketball tickets disappeared into one of them, and since then a pair of ski gloves, a gold ring, and more CD’s than I can count were sucked out of my hands in the same way.

Not too many of us have actually seen a black hole, but Thomas Müller, physics student, and Daniel Weiskopf, computer science professor, at the University of Stuttgart, have programmed a vision for us. With their simulation of a black hole in space, you can really imagine what it would be like to be in the pull of one.

A black hole occurs from the huge gravitational force of an exploding star. The force is so strong and dense that nothing can escape it, not even light. In fact, the enormous gravitational pull of the black hole would seem to displace the surrounding stars, creating dynamic and dramatic changes in, let’s say, a constellation. This effect is explained by the Schwarzchild black hole.

Read entire story>>

Follow me on Twitter. Technological Singularity and Futurism is updated often; the easiest way to get your regular dose is by subscribing to our news feed. Stay on top of all our updates by subscribing now via RSS or Email.