Documenting the Coming Singularity

Sunday, September 06, 2009

A new theory for life's beginnings - September 4, 2009, by Anuradha K. Herath

The new hypothesis suggests that life on Earth originated at photosynthetically-active porous structures made of zinc sulfide similar to deep-sea hydrothermal vents. Credit: The Institute for Exploration, the University of Rhode Island (URI) Graduate School of Oceanography (GSO), and the URI Institute for Archaeological Oceanography.

The Miller-Urey experiment, conducted by chemists Stanley Miller and Harold Urey in 1953, is the classic experiment on the origin of life. It established that the early Earth atmosphere, as they pictured it, was capable of producing amino acids, the building blocks of life, from inorganic substances.

Now, more than 55 years later, two scientists are proposing a hypothesis that could add a new dimension to the debate on how life on Earth developed.

Armen Mulkidjanian of the University of Osnabrueck, Germany and Michael Galperin of the U.S. National Institutes of Health present their hypothesis and evidence in two papers published and open for review in the web site Biology Direct.

The scientists suggest that life on Earth originated at photosynthetically-active porous structures, similar to deep-sea hydrothermal vents, made of zinc sulfide (more commonly known as phosphor). They argue that under the high pressure of a carbon-dioxide-dominated atmosphere, zinc sulfide structures could form on the surface of the first continents, where they had access to sunlight. Unlike many existing theories that suggest UV radiation was a hindrance to the development of life, Mulkidjanian and Galperin think it actually helped.

Read entire story>>

Follow me on Twitter. Technological Singularity and Futurism is updated often; the easiest way to get your regular dose is by subscribing to our news feed. Stay on top of all our updates by subscribing now via RSS or Email.